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Abstract
We investigate the transmission of electrons through a quantum ring coupled
to a quantum dot by applying a finite difference approach augmented by
exterior complex scaling for the solution of the corresponding time-independent
Schrödinger equation. It is shown that the transmission in the presence of
an additional ring- or dot-bound electron is energetically suppressed compared
with the transmission for a pure quantum dot–ring system, being reminiscent of
the so-called Coulomb blockade effect in quantum dots. The different behaviour
for varying parameters as well as in the presence of an attractive impurity in the
dot is discussed in some detail.

1. Introduction

Semiconductor nanostructures such as quantum dots, wells and wires are promising candidates
for nanoelectronic devices operating on the basis of quantum physical laws. The experimental
techniques for preparing these structures, such as molecular-beam epitaxy or chemical vapour
deposition followed by etching or lithographic patterning of gates, offer a high degree of control
and reproducibility. The dimensionality of the nanostructures plays a particularly important
role due to its impact on the density of states. Specifically, for quantum dots their shape and
number of electrons can be controlled experimentally (see [1–3] for a review on the electronic
structure of quantum dots).

Combining several of the above-mentioned nanostructures allows simultaneously a large
degree of variability and control. This holds in particular for the combination of quantum dots
and rings (QDR) (see [4–7] and references therein). It was shown in [8] that the distribution
of electrons between the dot and the ring can be influenced by the relative strength of the dot
and ring confinement as well as the gate voltage. An applied external magnetic field can induce
transitions of electrons between the two parts of the system. In view of this flexibility of a
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combined quantum dot and ring system one can expect that the transport through an open QDR,
i.e. through a QDR with attached leads, will also be of interest (for related studies see [9–11]).
A remarkable detailed study of the transport properties of an open QDR was performed in a
recent paper by Gudmundsson et al [12] where a large series of fascinating dependences of the
conductivity on the magnetic field strength was found. Quantum effects in open mesoscopic
rings have been studied by Orellana et al [11]. A quantum ring (QR) coupled to a reservoir was
investigated by Büttiker [13]. A topic related to transport through an open QDR is the influence
of single impurities on the conductance of a quasi-one-dimensional channel that was explored
in [14–17]. A corresponding experimental study can be found in [18]. For applications of
general mathematical methods for scattering in quantum channels and curved wires we refer
the reader to [19] and [20], respectively.

For most open QDR the question arises whether single electron transport through a coupled
QDR could be controlled by the presence of an additional charge, i.e. a bound electron, in the
ring and/or dot. This is precisely the problem to be investigated in the present work.

In detail we proceed as follows. In section 2 we specify our model of an open QDR
consisting of potentials for the dot, the ring and the leads (augmented by a constant background
potential). Section 3 contains a brief description of our computational approach. Section 4
addresses the spectral properties and bound quantum states of the QDR. The central section 5
contains a discussion of the results on the transmission function T (E) including (i) single-
electron transmission through the QDR, (ii) transmission in the case where there is an additional
bound electron in the QDR, being in a dot or ring bound state, (iii) a discussion of the
transmission behaviour in the case where there is an additional attractive impurity in the central
quantum dot. Section 6 contains the summary and conclusions.

2. Modelling the open quantum dot–quantum ring system

We consider the two-dimensional motion of electrons in a potential field V (x, y). Stationary
states of a single electron can be obtained by solving the Schrödinger eigenvalue problem[
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∂x2
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+ V (x, y)

]
�(x, y) = E�(x, y). (1)

When there are no leads attached to the QDR the potential V (x, y) possesses a rotational
symmetry, i.e. Lz is conserved, yielding the magnetic quantum number m. It is then most
natural to solve the corresponding Schrödinger equation in polar coordinates[
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]
ψ(r) = Eψ(r) (2)

where r = √
x2 + y2. Here and in the following we use effective atomic units (e.a.u.). For a

bulk semiconductor with dielectric constant ε and effective mass m of the electron we have for
the energy Eeff = e4h̄−2m∗ε−2 and for the length aeff = h̄2εe−2m∗−1. For GaAs with ε = 12.9
and m∗ = 0.067 these units are aeff = 10.2 nm, Eeff = 11 meV.

The potential V is defined as

V =
{

V1 := V0 + Vdot + Vring |x | � R0

V2 := V0 + Vdot + Vring + Vlead |x | > R0
(3)

where R0 is the position of the outer minimum of V0 + Vdot + Vring in the ring. The potential
term responsible for the dot is

Vdot(r) = −VD exp
(−r 2/d2

D

)
(4)
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Figure 1. Potential for a dot–ring system with attached leads for VD = 7, VR = 5, V0 = 5,
dD = dR = dL = 1, R = 4, and Z = 0. Upper part: three-dimensional potential landscape. Lower
part: contour plot. Effective atomic units are used.

and the potential term providing the ring of radius R is

Vring(r) = −VR exp
[−(r − R)2/d2

R

]
. (5)

V0 is the background potential. Since we are interested in transport through the open coupled
quantum dot and ring system we connect two straight leads smoothly, i.e. without potential
barriers, to the quantum ring for |x | > R0. The leads are oriented parallel to the x-axis. This
can be achieved by choosing

Vlead(x, y) = (V1(R0)− V0) exp
(−y2/d2

L

) (
1 − exp

[− (|x | − R0)
2 /d2

R

])
. (6)

The potential V obeys V1(R0) = V2(R0). The electrons are incoming in the left lead
and (partially) transmitted to the right lead. For large values of the y-coordinate only the
background potential V0 remains. The form of the potential (3)–(6) is chosen such that the
bottom of the lead is flat. The potential V for VD = 7, VR = V0 = 5, dD = dR = dL = 1,
R = 4 in the presence of leads is presented in figure 1. In order to reduce the number of
parameters to be varied, we choose in the following V0 = 5 and VR = 5.05. Later we will
also consider the case when V also contains a potential term due to the interaction of current-
carrying charges with an attractive impurity centre located in the centre of the quantum dot
VC(r) = −Z/r , Z = 1.

3. Computational approach

The smooth form of the potential (3) allows the application of a finite-difference fully numerical
method for the solution of the two-dimensional Schrödinger equation (1). Our finite-difference
multidimensional approach is described in detail in [22, 23]. In the particular case considered
here we solve equation (1) on uniform meshes in Cartesian coordinates (x, y) with typical
distances between mesh nodes in the range 0.05–0.1 e.a.u. Typical sizes of the rectangular
domain � in which the Schrödinger equation is solved are −10 < y < 10 and −Lx− < x <
Lx+ , where Lx− = 100 and Lx+ = 150. All our calculations are carried out for energies of
electrons much lower than V0, resulting in the wavefunctions decreasing exponentially outside
the ring and leads. For these energies and our values of parameters in the potential (3) the
boundary conditionsψ|y=±10 = 0 used in our calculations introduce a negligibly small error in
the final result [22]. The presence of potentials possessing different spatial scales in the system



2966 M V Ivanov and P Schmelcher

requires us to use rather dense meshes with the typical number of nodes being 2880×160. The
strong extension of � in the x direction is associated with our need to obtain the transmission
coefficient described below. For the situation of two electrons in the system (transmission of
an electron through the system with a bound second electron) we employed a fully numerical
Hartree–Fock approach that is described in [22, 23]. In fact the motion of the unbound electron
takes place in a total potential that is the sum of the potential (3) and the electrostatic potential
due to the bound electron. First we calculate the state of the single bound electron subjected
to the potential (3). Subsequently its charge distribution is frozen and the resulting potential
due to the electron–electron interaction is inserted into the Schrödinger equation for the second
electron. The latter also contains, of course, the potential (3). Choosing this approach we
neglect effects of the transmitting electron on the wavefunction of the bound electron. Due to
the frozen character of the bound electron, processes such as co-tunnelling transfer, in which
the incoming electron pushes out the bound electron in the dot, are not taken into account. We
remark that the calculations presented in the following focus on the spin-singlet configuration
for which no exchange interaction occurs. They show that the dominant effects of the electron–
electron interaction depend only on the total charge confined in the system, i.e. the observables
considered here show a very weak dependence on the detailed charge distributions of the
electrons. This circumstance, along with the small values for the exchange integrals due to the
large difference with respect to the spatial distributions of the wavefunctions of the projectile
and the confined electrons (especially for confinement in the central dot, but also for the ring-
localized states), indicate that one can expect only a minor difference in the results for the
spin-singlet and the triplet-spin configurations.

In order to make conclusions about the conductivity of our system and/or its potential
capability to control single charge transfer it is crucial to know the corresponding flux
transmission coefficient T for different geometries. Following the standard definition [21] this
value is the ratio of the transmitted to the incoming flux. In order to calculate the transmission
coefficient we solve equation (1) by applying special boundary conditions for large absolute
values of x . To ensure that the transmitted flux for x > R0 in the outgoing lead does not lead to
artificial reflections at the boundary of our grid, i.e. to avoid an artificial incoming wave in the
right lead, we apply for x � 0 an external complex rotation of the coordinate x . This complex
rotation is described and investigated in detail in [24]. The complex value of the x coordinate
as a function of the real parameter xr takes on the appearance

x(xr) = xr + i Im

[
ei�

2 cos�

(√
(xr − b)2 + Q(xr)/c2 −

√
b2 + Q(0)/c2 + xr

)]
(7)

where

Q(x) = exp
[− [c(x − b)]2 /4

]
.

Due to the complex rotation the wavefunction converges to zero as x → +∞. This allows us
to establish a boundary condition ψ = 0 on x = Lx+.

On the left boundary of the domain � at x = −Lx−, Lx− > 0 we can establish an
arbitrary non-uniform boundary condition, for example ψ(x = −Lx−) = 1, which we used
in our calculations. The value of the wavefunction on the boundary is arbitrary, because
the transmission coefficient depends only on a ratio of values calculated on the basis of the
wavefunction (see below). For E < V0 such a wavefunction at x = −Lx− is a sum of an
incoming and outgoing wave as well as some terms exponentially decreasing with increasing
x . If we are not in the immediate neighbourhood of the boundary x = −Lx− the wavefunction
obtained by imposing the above boundary condition is a sum of an incoming and outgoing
(reflected) wave, corresponding to the two possible motions of an incoming and reflected
electron along the left lead.
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We consider relatively narrow leads with a significant energetic separation of the ground
and the first excited states for transverse motion of the electron. For example, for leads with
the parameter values V (R0) = 5.05, V0 = 5 and dL = 0.5 the energy of the ground state of the
transverse motion is EL0 = 2.384, and this is the only bound transverse state. In this single-
mode regime for the motion of the electron in the leads the absolute value of the wavevector
can be expressed as a function of the energy only, and there is a direct proportionality between
the spatial probability density of the electron and the corresponding flux. Due to the complex
rotation of the x-coordinate the flux Fout in the right (x > R0) lead is directed outward.

Outside the region affected by the complex rotation in the right lead the flux Fout is
proportional to the average electron density DR in the right lead. There are two fluxes in the
left lead: the incoming flux Fin and the reflected one Fref. Let us consider an average density
DL of the wavefunction in the left lead DL. When this density is averaged over a section of
the lead much longer than the wavelength of the incident wave it will be (under the conditions
specified above) proportional to the sum of Fin and Fref. Taking into account that

Fout = Fin − Fref

one can easily obtain the formula for the transmission coefficient T

T = Fout

Fin
= 2DR

DR + DL
.

4. Spectral properties and bound quantum states

As indicated above, in the absence of the leads, i.e. for the case of a closed quantum dot and ring
system, we encounter a rotational symmetry around the axis perpendicular to the (x, y)-plane
that passes through the origin and therefore the angular momentum Lz is conserved yielding
the magnetic quantum number m. The corresponding potential V1 depends only on r and the
single-electron spectrum can be easily obtained by solving the corresponding one-dimensional
Schrödinger equation. This system without leads is similar to the set-up considered in [8]
where magnetic field-induced electron charge and spin switching between the laterally coupled
quantum dot and ring were investigated.

The presence of the leads breaks the cylindrical symmetry. Without a Coulomb impurity
in the centre of the dot only a few bound states of the ring–dot system remain. When the leads
and the ring are of the same width there are two types of bound states with an energy below
that of the ground transverse state in the leads: states that are localized in the quantum dot and
states that are localized in the ring. The number of dot-localized states depends on its depth and
width. On the other hand, there typically exist two ring-localized states that are bound due to
the weaker confinement of the electrons in the regions of the junctions of the ring and the lead,
which reduces the electronic kinetic and total energy compared with the energy of the states in
the leads.

The effect of the weaker confinement acting on the electrons at the junctions is similar
to the effect of two fictitious potential wells acting at the junctions of the leads with the ring.
As a result the ground and the first excited ring state of this type are similar to the symmetric
and antisymmetric states of a double well separated by a barrier. The energetic difference of
these states depends on the width of the ring. This difference is very small for thin rings and
increases with increasingly broader rings. Two examples of the corresponding states are shown
in figure 2. For a narrow ring dR = 0.5 (figures 2(a), (b)) the probability amplitude is strongly
localized at the junctions of the ring and leads and the energetic difference of the ground and the
first excited state is approximately 5×10−6. For a relatively broad ring dR = 2 (figures 2(d), (e))
the probability amplitude is leaking away from the junction along the bottom of the ring for the
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Figure 2. Wavefunctions (in arbitrary units) of ring and dot states for the parameter values
VR = 5.05, V0 = 5 and R = 5, −11 � x � 11, −7 � y � 7. Narrow ring and leads
dR = dL = 0.5 and VD = 9.5: (a) ground ring state E = 2.040 394, (b) first excited ring state
E = 2.040 407, and (c) ground dot state E = 2.058 702. Broad ring and leads dR = dL = 2
and VD = 3.1: (d) ground ring state E = 0.517 53 and (e) first excited ring state E = 0.517 66.
Effective atomic units are used for the coordinates.

ground ring state. The energetic difference of the ground and first excited state is here of the
order of 2 × 10−4. The energetically lowest state localized in the dot depends strongly on VD

and dD. Its energy ED0 can be lower or higher than the energy of the bound ring states. For the
states shown in figure 2 the parameters are chosen such that the lowest impurity/dot states lie
energetically slightly above the lowest pair of ring states. However, in the case of ED0 > EL0,
where EL0 is the lowest energy level for transverse motion in the leads, this dot state becomes
quasi-stationary. We remark that tuning the ratio of the widths of the leads and the ring allows
us to energetically shift the lead states with respect to the states in the ring.
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The energy of the transverse ground state in the leads for the parameter values VR = 5.05,
V0 = 5, and dL = 0.5 is EL0 = 2.384 and there is no bound excited state for the transverse
motion in the lead. For the case of broader leads dL = 2 the ground state possesses the energy
EL0 = 0.69 whereas the energy of the first excited state is EL1 = 2.08 e.a.u.

Let us now consider the case of the additional presence of an attractive impurity at the
centre of the dot. This system possesses an infinite number of bound states localized in the
ring and increasingly spreading into the leads with increasing degree of excitation. The two
energetically lowest states correspond to the above-discussed ring states in the absence of
the impurity, i.e. their wavefunctions possess a similar appearance. In figure 3 we present
the wavefunctions of the five energetically lowest bound states of the impurity–ring–dot–lead
system for a broad (dR = 2) ring. The parameters for this example are chosen such that the
lowest impurity/dot state lies below the lowest pair of ring states.

5. Transmission through a quantum ring–dot system with leads

Let us consider the case of the open ring–dot system without an impurity. In figure 4 we present
the dependence of the transmission coefficient for a single electron. This picture is obtained
for a narrow ring and narrow leads dR = dL = 0.5, the remaining parameters being VD = 9.5,
dD = 0.5, and R = 5.

Transmission occurs only above the energy EL0 of the ground state of the transverse
motion in the leads and shows an oscillatory behaviour with increasing energy. This can be
interpreted as the result of the interference of electronic waves in the ring–dot structure: for
the maxima of the transmission, all possessing a value close to unity, an integer number of
electronic wavelengths match into the ring. Indeed the energetic separation of the maxima
of the transmission increases linearly within the energetic order of the maximum. This is
reminiscent of the situation of an infinitely narrow closed ring for which the spectrum scales
as ∝m2

R2 where m is the magnetic quantum number and R is the radius of the ring and where
the energetic separation of neighbouring states obeys ∝ 2m+1

R2 . One therefore can associate the
oscillating structure of T (E), more precisely the positions of the maxima, with resonances in
the open finite size ring–dot system.

A second example is provided in figure 5 for broader leads and ring dL = dR = 2, the other
parameters being VD = 3.1, dD = 1 and R = 5. The system possesses two bound electronic
states in the ring with nearby energies ER0 = 0.517 525 and ER1 = 0.517 656 e.a.u. The values
of the parameters VD and dD for the system are too small to allow for a bound dot-located state
below EL0. Figure 5 shows two transmission curves as a function of the energy: T1(E) (full
curve) represents the single-electron transmission whereas T2(E) (broken curve) represents
the transmission of an electron through the dot–ring system with a second bound electron. The
single-electron transmission curve is quite similar to the one shown in figure 4 whose properties
have been discussed above. Obviously a major discrepancy between the two transmission
curves T1(E), T2(E) is the different energies for the onset of non-zero transmission which is
0.7 e.a.u. for T1(E) and, apart from the very narrow resonance at 0.868 e.a.u., it is 0.9 e.a.u. for
T2(E). This means that we encounter a Coulomb blockade effect, i.e. the bound ring electron
blocks the transmission of the second electron to be transported across the ring–dot device.
This blockade is to a good approximation independent of the ring state occupied by the bound
electron. The transmissions T (E) belonging to the case of the bound electron being in the
ground and the first excited state are indistinguishable on the scale of figure 5.

In figure 6 we show the real part of the wavefunction and the corresponding electronic
probability density in the dot–ring system and the neighbouring part of the leads for the case
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Figure 3. Wavefunctions (in arbitrary units) of the eigenstates of a system with leads and a centred
impurity. VR = 5.05, V0 = 5, and R = 5. Broad ring and leads dR = dL = 2 and VD = 8:
(a) ground dot state E = −3.218 75, (b) ground ring state E = 0.336 13, (c) first excited ring state
E = 0.336 36, (d) second excited ring state E = 0.508 88, (e) third excited ring state E = 0.521 73.
Effective atomic units are used for the coordinates.

of single-electron transmission, i.e. for no bound electron in the ring. The parameters are the
same as in figure 5 and the energy is E = 1.1, i.e. it is somewhat below the maximum of
T1(E) at E = 1.13 in figure 5. The oscillations of the density (figure 6(b)) in the left lead
originate from an interference of the incoming and reflected waves. No oscillations of the
density are encountered in the right lead, where only an outgoing wave is present. For energies
corresponding to T = 1 these oscillations are not encountered both in the left or in the right
lead.
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Figure 4. Transmission coefficient T (E) as a function of energy for an electron in the potential (3)
for VD = 9.5, VR = 5.05, V0 = 5, dD = dR = dL = 0.5, and R = 5. Effective atomic units are
used.
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T1  no bound electrons
T2  ring bound electron

Figure 5. Transmission coefficient T (E) as a function of energy for VD = 3.1, VR = 5.05, V0 = 5,
dD = 1, dR = dL = 2, and R = 5. Solid line (T1): single electron. Dashed line (T2): a second
electron is bound in the ring (E = 0.517 525). Effective atomic units are used.

Owing to a broad potential barrier between the ring and the dot the parameter VD as well
as the value of the energy ED0 of the electron in a dot-localized state do not significantly affect
the transmission coefficient for a single electron. The energies of the dot-localized states for
different values of VD (the values of the remaining parameters being the same as the ones
given above) are ED0 = 0.4402, 1.177 98, 1.894 78, 2.5844 for VD = 8, 7, 6, 5, respectively.
For all these parameter values the transmission coefficient coincides with the one presented in
figure 5, as can be seen by comparing figures 5 and 7. The behaviour of the transmission T2(E)
for a two-electron system with a bound electron in the central dot (see figure 7) is qualitatively
similar to the transmission T3(E) for an electron being bound in the ring. The two curves are
shifted with respect to each other and possess somewhat different values for their minima. The
energetic positions of the onset of the transmission agree very well (E ≈ 0.92).
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Figure 6. (a) Real part of the wave function and (b) electronic density including the region of the
QDR as well as the neighbouring leads (see figure 5) for a single electron E = 1.1. Effective atomic
units are used.
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T1  no bound electrons
T2  dot bound electron
T3  ring bound electron

Figure 7. Transmission coefficient T (E) as a function of energy for VD = 8, VR = 5.05, V0 = 5,
dD = 1, dR = dL = 2 and R = 5. Solid line (T1): single electron. Bold line (T2): a second electron
is bound in the dot (Ec = 0.4402). Dashed line (T3): the second electron is bound in the ring (ring
ground state E = 0.517 52). Effective atomic units are used.

Let us now consider the situation of the presence of an additional impurity, i.e. of a point
charge in the central dot. The corresponding transmission coefficients are presented in figure 8.
If there are no electrons bound to the impurity, i.e. for the case of single-electron transmission
(T1(E) in figure 8), we observe a series of resonances for energies close to the onset of the
transmission. This behaviour is a consequence of the long-range character of the Coulomb
attraction which affects the potential in the leads. The Coulomb attraction shifts the energy
threshold for the onset of the transmission to its minimal possible value, i.e. to the ground
transverse energy of the electron in the leads.
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Figure 8. Transmission coefficient T (E) as a function of energy in the presence of a centred
impurity for VD = 3.1, VR = 5.05, V0 = 5, dD = 1, dR = dL = 2 and R = 5. Solid
line (T1): single electron. Dashed line (T2): a second electron is bound in the ground ring state
(Ec = 0.336 13). Effective atomic units are used.

Let us assume there is a (second) electron in the ring that is bound and feels the Coulomb
interaction with the impurity in the dot (see T2(E) in figure 8). Then the Coulomb attraction
due to the impurity is screened by the electron in the ring and the incoming electrons do not
encounter a long-range interaction in the leads. As a result the transmission T (E) becomes
much simpler again, and indeed it is quite similar to the one presented in figures 5 and 7.
However, the effect of Coulomb blockade is much less pronounced: the potential due to
the central charge weakens the effect of the repulsion of the incoming electron due to the
electron bound to the ring (the net charge of the impurity and ring-bound electron is zero).
The transmissions T (E) belonging to the cases of the bound electron being in the ground and
the first excited states are indistinguishable on the scale of figure 8. On the other hand, the
threshold energy for the onset of transmission in the case of the ring-bound electron is higher
than the corresponding threshold energy for a dot-bound electron (see figure 9). The latter can
be explained by the fact that, opposite to the three-dimensional case, a two-dimensional system
of a positive point charge Z = 1 and an electron bound to it repels a second electron when it is
far from the centre of the system [25, 26]. This repulsion increases with the dispersion of the
probability distribution of the bound electron.

Finally, we investigate the case of two bound electrons (figure 9). Binding of two electrons
in the absence of the impurity, one being in the central dot and the other one in the ring, is
not possible because the repulsive potential due to the dot electron does not allow for bound
ring states. On the other hand, binding of two electrons in the dot requires high values of
VD. In contrast to this two electrons can easily be bound in the dot in the presence of the
impurity. For the parameter values VD = 8, dD = 1, dR = dL = 2 and R = 5 corresponding to
figure 9 two electrons with antiparallel spins are bound in the dot with the single electron energy
E = −0.6696 (the interaction of these two electrons is taken into account in the Hartree–Fock
approximation). We see that the corresponding energy threshold for transmission of electrons
approximately coincides with the threshold in case of no impurity and one bound electron (see
figure 7). Thus, we can conclude that the decisive factor responsible for the value of the energy
threshold for transmission is the sum of the charges in the system. For neutral systems in the
presence of the impurity minor variations of the threshold energy can be a result of different
spatial distributions of bound electrons.
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Figure 9. Transmission coefficient T (E) as a function of energy in the presence of a centred
impurity for VD = 8, VR = 5.05, V0 = 5, dD = 1, dR = dL = 2 and R = 5. Solid line (T1): single
electron. Solid bold line (T2): an electron in the central dot. Dashed line (T3): a second electron is
bound in the ground ring state (Ec = 0.336 13). Dashed bold line (T4): two electrons bound in the
central dot. Effective atomic units are used.

6. Summary and conclusions

We have investigated charge transmission through a coupled quantum dot and ring system. Our
interest was not only to study single-electron transmission but also to explore the transmission
in cases where there is an additional electron bound to the quantum dot–ring.

The modelling of the open QDR, i.e. with attached leads, contains independent potentials
for the dot, the ring and the leads that are matched together smoothly. Changing the parameters
of the combined potential allows for a substantial variability of its appearance and of the
resulting properties such as the number of bound electronic states and their characteristics. Our
computational approach to solving the corresponding two-dimensional Schrödinger equation
is a finite-difference fully numerical method. For the case of two electrons (an incoming
and a bound one) the electronic interaction has been treated via the Hartree–Fock method.
Special boundary conditions have been employed, such as external complex rotation of the
corresponding coordinates, in order to avoid artificial reflections at the boundary of the grid.
Our study of the flux transmission focuses on the single-mode regime for the transverse motion
of the electrons in the leads.

The open QDR typically possesses a few bound states that can be localized either in the
dot or in the ring. For leads and ring of equal width the ring states are bound due to the weaker
confinement of the electrons in the regions of the junctions of the ring and the lead. Indeed, the
energetically lowest two ring states are reminiscent of the symmetric and antisymmetric states
of a double well separated by a barrier. Tuning the ratio of the widths of the leads and the ring
allows the lead states to be energetically shifted with respect to the states in the ring. For the
case of an additional presence of an impurity in the central dot the open QDR possesses an
infinite number of bound states localized in the ring. Some of them show a limited leaking into
the leads.

The transmission T1 of an electron through the QDR without bound electrons shows the
well-known oscillatory behaviour as a function of the energy, which is due to the resonances,
i.e. standing electronic waves, in the ring. The transmission T2 in the case where there is a
second bound electron in the ring differs significantly from T1. A major discrepancy of the
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two transmission curves is the different threshold energy for the onset of a finite transmission.
As a result we obtain a Coulomb blockade effect, i.e. the bound ring electron blocks the
transmission of the incoming electron. This blockade is to some extent independent of the
ring state occupied by the bound electron. In the presence of a dot-bound electron it turns out
that the transmission of lead electrons is largely independent of the parameters, i.e. the shape of
the dot. The corresponding transmission T3(E) is qualitatively, but not quantitatively, similar
to T2(E) for the case of a ring-bound electron.

Combining the open QDR with a centred attractive impurity leads, in the case of no
additional electrons in the QDR, to a strong change in the transmission behaviour, in particular
close the threshold of a finite transmission, which is due to the long-range character of the
Coulomb interaction: The Coulomb attraction shifts the threshold of the transmission to its
minimal possible value, i.e. to the energy of the ground transverse state of an electron in the
lead. When there is a ring electron bound to the impurity, the long-range Coulomb interaction
of the impurity is screened by the electron in the ring and the transmitting electrons do not
encounter a long-range interaction in the leads. However, the effect of Coulomb blockade is
much less pronounced in the presence of a positive Coulomb impurity. We have also studied
electron transmission for a system with two electrons being bound to an attractive impurity in
the dot. It turns out that the dominating factor responsible for the position of the transmission
threshold is the sum of the charges in the system. Minor variations of the threshold energy
are possible in electrostatically neutral systems due to the different localization of the bound
electrons.

Having shown the existence of a Coulomb blockade effect in our coupled quantum dot and
ring system one might think of using our device in order to control, i.e. trigger or block, single
charge transfer. To verify this possibility the question would have to be answered about how to
control the presence of single charges on the quantum dot–ring system which goes beyond the
scope of the present investigation.
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